Journal Of Economy, Technology, and Business (JETBIS) Volume 2, Number 4 April 2023 p-ISSN 2964-903X; e-ISSN 2962-9330

VALUE ENGINEERING ANALYSIS ON THE ARCHITECTURAL WORK OF THE ARJOSARI MALANG TYPE A TERMINAL REVITALIZATION PROJECT

Shavica Kurnia Meilasari¹, Wateno Oetomo², Budi Witjaksana³

Universitas 17 Agustus 1945, Surabaya Indonesia

Email: shavica.kurnia@gmail.com, wateno@untag-sby.ac.id, budiwitjaksana@untag-sby.ac.id

KEYWORDS:	ABSTRACT
Value Engineering, Terminal	In 2019, the central government made DED Revitalization of Arjosari
	Malang Type A Terminal. The Budget Plan (RAB) needed for overall
	revitalization is Rp. 80 billion. Then, based on the results of the FY
	2024 needs ceiling discussion meeting on January 30, 2023, held in
	Jakarta, the RAB for the revitalization of the Arjosari Malang Type A
	Terminal is too large and needs to be streamlined again. One of the
	work items that can still be cost-efficient is the architectural work item.
	Several factors cause the cost of architectural work to be large,
	including materials and technology. The use of expensive materials can
	increase the cost of an architectural project. Related to the above, value
	engineering or value engineering is used with the aim of efficient costs
	and looking for alternative alternatives or ideas that aim to produce
	costs that are better or lower than the previously planned price. The
	results of value engineering on architectural work resulted in savings of
	Rp.1,718,085,568 or 8% of the initial cost of the architectural work
	project.

INTRODUCTION

Type A Passenger Terminal is one of the assets or infrastructure whose authority is in the hands of the central government. One of them is Arjosari Terminal (Abreu et al., 2022). The Budget Plan (RAB) needed for the revitalization of Arjosari Malang Type A Terminal as a whole is Rp. 80 billion. That is a fairly large number and needs to be streamlined again (Yustisia, 2015).

One of the work items that can still be cost-efficient is the architectural work item (Sharif et al., 2023). In architectural work, the building must also ensure that the building has a clear function and is designed to be comfortable for its residents. In addition, architectural work must also determine the external appearance and interior of the building which can affect the image and aesthetics of the building (Transportation, 2018).

Related to the above, researchers want to research using value engineering or value engineering (Mahyuddin, 2020). Value engineering is a creative and planned approach with the aim of identifying and efficiently unnecessary costs (Nandito et al., 2021). Value engineering is used to look for alternative alternatives or ideas that aim to produce costs that are better or lower than preplanned prices with functional constraints and quality of work. Value engineering in building architectural work is carried out to optimize the value of buildings or architectural projects by considering factors such as quality, cost, function, aesthetics, and safety (Afriadinir &; Dinariana, 2019).

It is expected that by using value engineering, efficiency can be carried out on RAB DED

Terminal Type A Arjosari Malang, and later an efficient building design will be obtained but still in accordance with applicable regulations and standards.

The purpose of this study is to analyze the application of Value Engineering in architectural work. To analyze the costs obtained from the application of Value Engineering architectural work (Andriani, 2018).

Research Benefits

The benefits of the results of this study are expected:

- 1. As reference material for local agencies that have authority in infrastructure maintenance efforts.
- 2. Increase knowledge and insight into science for researchers in analyzing quality management.
- 3. As an additional reference or literature for other researchers related to this study.

Limitations and Scope of Research

The limitation of the problem is done so that the research is not widened and easy to implement. The limitations of the problem in this study are as follows:

- 1. The research location was only carried out at Terminal Type A Arjosari Malang.
- 2. The discussion in this study only includes the evaluation of materials or the replacement of materials.

RESEARCH METHODS

Value Engineering

Value engineering is an organized and creative approach system that aims to identify costs that do not provide quality, usability, or something that enlivens a good appearance or the properties desired by consumers (Rojas & Macías, 2013).

Benefits of *Value Engineering*

The benefits of *value engineering* in construction projects are (Kormonolin et al., 2020):

- 1. Reduce project costs.
- 2. Reduce wastage of resources.
- 3. Reduce unnecessary costs.
- 4. The creation of new creative ideas.
- 5. The value of the project has become better.
- 6. Project functions in accordance with the provisions.
- 7. Save project time.
- 8. Mitigation of possible project risks
- 9. Increase work productivity.
- 10. Get efficient results.
- 11. Produce Value Engineers experts.
- 12. Support to decision makers.

Value Engineering *Stage*

The specific feature of the concept of *Value Engineering* is an analysis that is carried out systematically from the beginning of the analysis to obtain the final results that can be accounted for. These stages are known as the Value Engineering Work Plan. These stages are:

Information stage

This stage is the stage of extracting and collecting information and data needed based on questions in the value engineering work plan. The data needed includes project data containing

general project information, project building functions, and project design constraints. Project data is needed to obtain basic information about a project. Some of the basic principles carried out at the information stage are to create a *breakdown cost model* and create a Pareto diagram.

Breakdown Cost Model

The creation of a *breakdown cost model* aims to sort work items ranging from the highest cost to the lowest cost and then presented cumulatively. From the *breakdown cost model*, analysis can be carried out to determine the limit of the highest-cost work items using the legal basis of parParetostribution.

Diagram Pareto

The Pareto diagram was invented by Vilfredo Pareto, an economist in the 19th century, and first used by Joseph Juran. Joseph Juran stated that 80% of the company's problems are the result of only 20% of causes.

Function Analysis

Function analysis aims to classify the main functions and their supporting functions. From this classification, a comparison is obtained between costs and the value of benefits needed to produce the function. The next stage is the function analysis process using the Cost / Worth (C / W) ratio equation which analyzes the cost of the element with the cost of the element function. Index Function Analysis = Cost/Worth (2.1) Where cost is the total cost of a work item and worth is a form of cost that only has a function value to the work item. In the function analysis stage, if the index value is obtained > 1, then some of these work items have the potential to be carried out via VE engineering.

Creative stage

At this creative stage, innovation and creativity are needed in processing cost elements that have the potential to cause *loss costs while* still referring to the principle of not reducing performance, quality, benefits, functions, and aesthetics in an element of work chosen in the concept of *value engineering*. If several alternatives to the creativity process have been determined, further analysis can be carried out.

Analysis stage

This stage will be analyzed by the tools that appear. The analysis includes *Life Cycle Cost* (LCC) analysis and profit and loss analysis.

Profit and Loss Analysis

In this analysis, the ideas that have been obtained at the creative stage will be arranged with advantages and disadvantages. Once the gains and losses on each idea or alternative are recorded, it is then given a rating for each alternative.

Project Life Cycle Cost Analysis

The life cycle of a project consists of six major stages, namely the conception and feasibility study stages, engineering and design, procurement, construction, initiation, and application as well as operation or use (Indrastuti &; Mustifany, 2022). After identifying all associated costs by year and amount then converted into *present value*, then the costs are added together to get the *life cycle cost*

LCC = Initial Cost + Initial Cost + Cost Therapy + Material Replacement Cost (2.2)

Life cycle cost is a way that, at least in theory, has the potential to evaluate construction work. **Recommendation stage**

The recommendation stage is the last stage of the value engineering work plan. At this stage, what is done is to provide recommendations or the best analysis results that will be selected or used.

RESULTS AND DISCUSSION

Information Stage

The following is information about the work that can be used for the application of value engineering.

- a. Job Name: Revitalization Terminal Type A Arjosari Malang
- b. Location: Jl. Raden Intan No. 1, Arjosari, Malang City
- c. Building Type: Transportation Facility Building
- d. Land Area: 28,150 m2
- e. Built-up-Area : 7,343 m2

Breakdown Cost Model

In the Arjosari Malang Type A Terminal revitalization project, there are twenty-one jobs for architectural work. Then identify high-cost items by compiling a Breakdown Cost Model. The following architectural work is referred to in Table 1.

Pekerjaan Arsitektur					
No.	Types of Jobs	Price			
1	Pack. Wall Pairs 1st Floor	Rp1.680.338.382			
2	Pack. Door and Window Frames 1st Floor	Rp469.479.400			
3	Pack. Floor & Wall Coverings 1st Floor	Rp1.234.816.495			
4	Pack. Ceiling &; Hanging 1st Floor	Rp627.568.875			
5	Pack. 1st Floor Painting	Rp324.693.090			
6	Pek. Sanitary Lt 1	Rp388.348.700			
7	Pek. Signage Lt 1	Rp46.971.050			
8	Pack. Wall Pair 2nd Floor	Rp1.183.948.054			
9	Pack. Door and Window Frames 2nd Floor	Rp138.106.700			
10	Pack. Floor & Wall Coverings 2nd Floor	Rp649.661.750			
11	Pack. Ceiling &; Hanging 2nd Floor	Rp1.081.216.584			
12	Pack. 2nd Floor Painting	Rp300.784.672			
13	Pek. Sanitary Lt 2	Rp168.401.850			
14	Pack. Roof 2nd Floor	Rp1.430.570.168			
15	Pek. Signage Lt 2	Rp33.124.000			
16	Pack. Exterior Façade	Rp4.668.281.437			
17	Pack. Ramp, Stair Railing, and Void	Rp179.900.076			

Table 1

No.	Types of Jobs	Price
18	Pack. Yard and parking	Rp5.874.614.009
19	Pack. 1st Floor Furniture	Rp316.989.500
20	Pack. 2nd Floor Furniture	Rp548.156.000
21	Pack. Office and Interior Equipment	Rp136.560.000
SUM	1	IDR 21,482,530,792

Source: Olahan Researcher

From Table 1, a *breakdown cost model* is then made to determine the highest cost so that value engineering analysis can be carried out.

	breakdown Cost Model						
No	Types of Jobs	Price	Total	Cumulative			
110			Percentage	Percentage			
1	Pack. Yard and parking	Rp5.874.614.009	27,35%	27,35%			
2	Pack. Exterior Façade	Rp4.668.281.437	21,73%	49,08%			
3	Pack. Wall Pairs 1st Floor	Rp1.680.338.382	7,82%	56,90%			
4	Pack. Roof 2nd Floor	Rp1.430.570.168	6,66%	63,56%			
5	Pack. Wall Pair 2nd Floor	Rp1.183.948.054	5,51%	69,07%			
6	Pack. Floor & Wall Coverings 1st Floor	Rp1.234.816.495	5,75%	74,82%			
7	Pack. Ceiling &; Hanging 2nd Floor	Rp1.081.216.584	5,03%	79,85%			
0	Pack. Floor & Wall Coverings 2nd	Rp649.661.750	3,02%	82,87%			
0	Floor						
9	Pack. Ceiling &; Hanging 1st Floor	Rp627.568.875	2,92%	85,80%			
10	Pack. 2nd Floor Furniture	Rp548.156.000	2,55%	88,35%			
11	Pack. Door and Window Frames 1st	Rp469.479.400	2,19%	90,53%			
11	Floor						
12	Pek. Sanitary Lt 1	Rp388.348.700	1,81%	92,34%			
13	Pack. 1st Floor Painting	Rp324.693.090	1,51%	93,85%			
14	Pack. 1st Floor Furniture	Rp316.989.500	1,48%	95,33%			
15	Pack. 2nd Floor Painting	Rp300.784.672	1,40%	96,73%			
16	Pack. Ramp, Stair Railing and Void	Rp179.900.076	0,84%	97,56%			
17	Pek. Sanitary Lt 2	Rp168.401.850	0,78%	98,35%			
19	Pack. Door and Window Frames 2nd	Rp138.106.700	0,64%	98,99%			
10	Floor						
19	Pack. Office and Interior Equipment	Rp136.560.000	0,64%	99,63%			
20	Pek. Signage Lt 1	Rp46.971.050	0,22%	99,85%			
21	Pek. Signage Lt 2	Rp33.124.000	0,15%	100,00%			

Table 2Breakdown Cost Model

Source: Processed by Researchers

560

Vol 2, No 8 August 2023

Pareto Distribution

From the Breakdown Cost Model listed in Table 2 above, it can be determined the limit of high-cost work items using the *Pareto* distribution graph presented in Figure 1.

Source: Processed by Researchers

Based on the graph of the Pareto distribution, a linear regression equation is obtained with the following formula:

Equation $y = -3E-06x^4 + 0.0008x^3 - 0.0814x^2 + 3.958x + 12.576$ If x = 20%; so y = 33,35%If y = 80%; so x = 65,096% $\Delta P = 33,35\% - 20\% = 13,35\%$ $\Delta C = 80\% - 65,096\% = 33,35\%$ So $\Delta C > \Delta P$

Percentage of the number of work items = $20\% + \Delta P = 20\% + 13,35\% = 33,35\%$

The number of work items that need to be performed value engineering is as many as

= 33,35% x 21

 $=7.0035 \rightarrow 7$ Work items

So the number of work items that need to be done value engineering is as much as 7 work items.

Function Analysis

After finding the number of high-cost work items, the next step that must be taken is to perform a function analysis. The following work items will be carried out function analysis starting from the highest percentage value.

Work items to be analyzed functions				
No	Types of Jobs			
1	Pack. Yard and parking			
2	Pack. Exterior Façade			
3	Pack. Wall Pairs 1st Floor			
4	Pack. Roof 2nd Floor			
5	Pack. Wall Pair 2nd Floor			
6	Pack. Floor & Wall Coverings 1st Floor			
7	Pack. Ceiling &; Hanging 2nd Floor			

Table 3

Source: Olahan Researcher

Table 4 Function Analysis (Yard and Parking Works)

Function Analysis								
Item	Item: Yard Work and Parking							
Fun	ction: Create Page							
No	Description	Verb	Noun	Cost	Worth			
1.	Floor hardener favicon color	Protect	Floor	IDR 52,500	IDR 52,500			
2.	Finishin Trowel	Flatten	Floor	IDR 30,000	-			
				Total IDR 82,500	IDR 52,500			
Cos	t/Worth			1,57				

Source: Olahan Researcher

Table 5

Analisis Fungsi (Wall Cladding ACP)

	Function Analysis							
Item	Item: Installation of Wall Cladding ACP							
Fune	ction : Beautify the Outside							
No	Description	Verb	Noun	Cost	Worth			
1.	Aluminum composite panel 4mm	Beautify	Wall	IDR	IDR 787,500			
		your		787,500				
2.	ACP Galvanized Bracket	Strengthen	Skeleton	IDR 80,000	-			
3.	Aluminum composite frame	Supporting	ACP	IDR	IDR 180,000			
	40x40			180,000				
4.	Screw	Bind	Skeleton	IDR 7,680	IDR 7,680			
5.	Sealant	Glue	ACP	IDR 56,875	-			
			Total	IDR	IDR 975,180			
				1,112,055				
			Cost/Worth	1,14				

Source: Olahan Researcher

	Table 6 Function Analysis (Wall Pairs)								
Function Analysis									
Item	ı : Wall Pair		-						
Fun	ction: Limit Room								
No	Description	Verb	Noun	Cost	Worth				
1.	Light Brick 10cm Thickness	Limiting	Room	IDR 68,940	IDR 68,940				
2.	Instant mortar	Glue	Wall	Rp.249	Rp.249				
			Total	IDR 69,189	IDR 69,189				
			Cost/Worth	1					

Source: Olahan Researcher

			Table 7	
Fu	nct	ion	Analysis (Roof Cov	ering)

	Function Analysis							
Item	: Roof Cover							
Func	tion:							
No	Description	Verb	Noun	Cost	Worth			
1.	Multiroof sand metal tile roof	Shut	Building	IDR 62,042	IDR 62,042			
	0.35mm color							
2.	Nails/Screws	Connect	Roof	IDR 3,185	IDR 3,185			
			Total	IDR 65,227	IDR 65,227			
			Cost/Worth	1				

Source: Olahan Researcher

Table 7

Analisis Fungsi (Pasangan Dinding)

Function Analysis									
Iten	Item : Wall Pair								
Fun	Function: Limit Room								
No	Description	Verb	Noun	Cost	Worth				
1.	Light Brick 10cm Thickness	Limiting	Room	IDR 68,940	IDR 68,940				
2.	Instant mortar	Glue	Wall	Rp.249	Rp.249				
			Total	IDR 69,189	IDR 69,189				
			Cost/Worth	1					

Source: Olahan Researcher

Table 8	
Analisis Fungsi (Pekerjaan Lantai)	

Function Analysis					
Item	: Floor Work				
Func	ction : Footing Base				
No	Description	Verb	Noun	Cost	Worth
1.	Homogeneous tile Roma	n Beautify	Floor	IDR	IDR 212,220
	60x60	your		212,220	
2.	Portland Cement	Glue	Ceramics	IDR 12,150	IDR 12,150
3.	Tidal Sand	Glue	Ceramics	IDR 7,713	IDR 7,713
4.	Color Cement	Fill	Ceramic	IDR 28,495	-
			grout		
			Total	IDR	IDR 232,083
				260,578	
			Cost/Worth	1,12	
	Source, Olahan Dessourch an				

Source: Olahan Researcher

Table	9
-------	---

Analisis Fungsi (Pekerjaan Plafon)

Function Analysis

Item:	Ceiling	Work	

Function: Beautify the Ceiling

Value Engineering Analysis On The Architectural Work Of The Arjosari Malang Type A Terminal Revitalization Project

Vol 2, No 8 August 2023

No	Description	Verb	Noun	Cost	Worth	
1.	PVC Ceiling	Cover	Roof	IDR	IDR 124,950	
				124,950		
2.	Adhesive	Glue	Ceiling	IDR 23,761	IDR 23,761	
			Total	IDR	IDR 148,711	
	148,711					
Cost/Worth 1						
	Source: Olaban Researcher					

From the results of the function analysis above, if a cost/worth ratio is obtained > 1, then some of these work items have the potential for value engineering. A high cost-to-worth ratio in a work item indicates that the work item has high cost savings, and will be selected for further analysis. The work items that the next analysis will carry out are yard and parking work, exterior façade work, and

Creativity Stage

floor work.

In this creative stage, a collection of alternative substitutes for each selected work item from the information stage is carried out. If several alternatives to the creativity process have been determined, further analysis can be carried out.

Substitute Alternatives

The alternative substitutes can be reviewed from various aspects. Here is a table of alternate alternatives for yard work, exterior façade work, and floor work.

Table 10

Alternatives to Yard and Parking Jobs					
	Alternatives to Yard and Parking Jobs				
Work Item: 0	Create a Garden				
Function: Gr	een Open Area				
Existing	Floor Hardener Cast Concrete Floor				
Alternative	Planting media, grass, and trees				
1					
	Source: Processed by Researchers				
	Table 11				
Al	Alternative Replacement of Exterior Façade Work				
Alternative Replacement of Exterior Façade Work					
Work Item: H	Work Item: Pair Wall Cladding ACP				
Function: Be	autify the Outside				
Existing	Wall cladding ACP thickness 4mm				
Alternative	Wall cladding GRC thickness 4 mm				
1					
Alternative	Wall cladding woodplank				
2					

Source: Olahan Researcher

564

No			CRC	Woodplank
1	Excess	Periotent to all	Pagistant to all	More durable than real
1.	EXCESS	weather conditions	weather conditions	wood
		Easy to shape and apply	Easy to shape and apply	Anti-termite
		Easy maintenance	Easy maintenance	Easy maintenance and
		and maintenance	and maintenance	maintenance
		Flat and smooth	Flat and smooth	Easy and fast installation
		surface	surface	
		-	Easy and fast	The price is relatively
			installation	cheap
		-	The price is	-
			relatively cheap	
2.	Deficiency	The price is	GRC manufacturing	Can't stand the impact
		relatively expensive	must go through the	
			factory, it is difficult	
			to make manually	
			without reliable	
		Doquiros ovports in	Limited availability	This motorial is quite
		the installation	in the market	heavy
		process	III the market	ncavy
		At high	-	-
		temperatures, it can		
		emit toxic gases		
		Source: Ola	ahan Researcher	
		Т	able 13	
	Alt	ternative to Floor and	Wall Covering Work	1st Floor
	Alternative to Floor and Wall Covering Work 1st Floor		st Floor	
	Work Item:	: Floor Pair Work		
	Function: F	Footing Base		
	Existing	Roman tile homoger	neous floor 60x60	
	Alternative	Epoxy flooring		
	1			
	Alternative	Teak parquet floor 1	.2x5x20cm	
	2	<u> </u>		
		Source: Ola	ahan Kesearcher	

Table 12
Advantages and Disadvantages of Material

Table 14Advantages and Disadvantages of Material

No		Roman Homogeneous Flooring	Epoxy Flooring	Teak Wood Parquet Flooring
1.	Excess	Lots of variety	More elegant and bright display	The look is more elegant and natural because of real wood
		Priced	Priced	Easy installation
		Easy maintenance	Easy maintenance	
			Long enough durability	
2.	Deficiency	The texture is classified as hard	Requires experts in the installation process	Need more care because it is prone to moisture if exposed to water and attacked by termites
		Does not absorb heat	Difficult to	
		Source: Olaha	an Researcher	

Analysis Phase

At the analysis stage, an analysis will be carried out to determine which design from various alternatives is the best alternative. To determine the best alternative, a stage will be carried out, namely the Life Cycle Cost (LCC) Analysis stage.

Life Cycle Cost

Life cycle cost analysis is used to calculate alternatives based on cost criteria. In the project life cycle cost analysis, the variable costs taken into account include initial costs, operational costs, maintenance costs, and replacement costs. Some of the basic provisions used for this analysis are the life value of the plan and the value of I (Bank Indonesia deposit interest + risk). Age of plan = 50 years i = Bank Indonesia deposit interest + risk (assumed risk value equals interest). So the value of i = 5% + 5% = 10% 4.8.1. Life Cycle Cost Work Page.

Table 15					
	Kesimpu	lan Biaya Daur Hidu _l	o Proyek		
		Analysis Phase			
	Project L	ife Cycle Cost Analysi	8		
Work	Item: Yard Work and	d Parking			
Invest	tment Age: 50 Years				
MAR	R: 10%				
No 7	Гуреs of Fees	Initial Design (A0)	Alternative Design $(\Delta 1)$		
1.	Initial Cost	IDR 576,994,272	IDR 741,667,416		
2. 0	Operational Cost	0	0		
3. 1	Maintenance Cost	IDR 572,079,086	IDR 735,349,442		
4. I	Replacement Cost	0	0		
Total	Total Life Cycle Cost IDR 1,149,073,358 IDR 1,477,016,858				
Source: Olahan Researcher					

https://jetbis.al-makkipublisher.com/index.php/al/index

Life Cycle Cost of Exterior Facade Work

	Table 29			
_	Project Life Cycle Cost Conclusion			
		Analysis 1	Phase	
		Project Life Cycle	Cost Analysis	
		Work Item: Exterio	r Facade Work	
		Investment Age	e: 50 Years	
		MARR:	10%	
No	Types of Fees	nitial Design (A0)	Iternative Design (A1)	lternative Design (A2)
1.	Initial Cost	DR 1,999,985,847	IDR 562,824,480	IDR 498,898,736
2.	Operational Cost	0	0	0
3.	Maintenance	DR 1,982,948,760	IDR 567,660,150	IDR 503,185,170
	Cost			
4.	Replacement	0	0	0
	Cost			
То	Total Life Cycle Cost DR 3,982,934,607 IDR 1,130,484,630 IDR 1,002,083,906			
	Source: Olahan Researcher			

Life Cycle Cost of Floor Work

		Table 16			
	Kesimpulan Biaya Daur Hidup Proyek				
		Analysis Phase			
		Project Life Cycle Cost A	nalysis		
		Work Item: Floor Wo	rk		
		Investment Age: 50 Ye	ears		
		MARR: 10%			
No	Types of Fees	Initial Design (A0)	Alternative	Alternative Design	
			Design (A1)	(A2)	
1.	Initial Cost	IDR 964,481,871	IDR	IDR 554,613,840	
			525,202,500		
2.	Operational Cost	0	0	0	
3.	Maintenance Cost	IDR 956,265,834	IDR	IDR 549,889,306	
			520,728,509		
4.	Replacement Cost	0	0	0	
Tot	Total Life Cycle Cost IDR 1,920,747,705		IDR	IDR 1,104,503,146	
1,045,931,009					
	Source: Processed by Desearchers				

Source: Processed by Researchers

Recommendation Stage

The recommendation stage is the last stage of the value engineering work plan. At this stage, what is done is to provide recommendations or the best analysis results that will be selected or used. So the results of all these analyses are selected as the best alternative that will be used as the final result of value engineering.

Table 38

Tuble 50				
Project	Project Life Cycle Cost Conclusion Work Page			
Recommendation Stag	ge			
Work Item :				
Existing	Floor Hardener Cast Concrete Floor			
Selected alternatives	Alternative 1: Garden works (Urugan Land and planting mini elephant grass)			
elephant grass) Cost Savings Construction Cost Savings: IDR 576,994,272 – IDR 735.349.442= Rp.158.355.170 Total life cycle cost savings: IDR 1,149,073,358 - IDR 1,477,016,858= -IDR 327,943,500 Or by -2.7%				

Source: Processed by Researchers

Based on Table 38, the alternative chosen was the creation of a park that functioned for greenery around the terminal area but experienced an increase in construction costs by 28.5%.

Exterior Façade Work		
Recommendation	Stage	
Work Item: Exterior Façade		
Existing	Wall cladding alumunium composite panel (ACP)	
Selected	Alternative 1:	
alternatives	Wall cladding Glass Reinforced Concrete (GRC)	
Cost Savings	Construction Cost Savings:	
	Rp.1.999.985.847– Rp. Rp. 562,824,480= IDR	
	1,437,161,367	
	Total life cycle cost savings:	
	IDR 3,982,934,607,- IDR 1,130,484,630= IDR	
	2,852,449,977	
	Or 30.78%	

Table 39	
Exterior Facade Work	

Source: Processed by Researchers

Based on Table 4.39, the selected alternative is the replacement of an Aluminum Composite

Panel (ACP) with Glass Reinforced Concrete (GRC) and experienced construction cost savings of 71%.

Table 40		
Floor Work		
Recommendation Stage		
Work Item: Floor		
Existing	Lantai homogeneous tile Roman 60x60 polish	
Selected alternatives	Alternative 1:	
	Epoxy flooring	
Cost Savings	Construction Cost Savings:	
	IDR 964,481,871 - IDR525,202,500 = IDR	
	439,279,371	
	Total life cycle cost savings:	
	IDR 1,920,747,705 - IDR 1,045,931,009= IDR	
	874,816,696	
	Or 35.57%	
Source: Processed by Researchers		

Based on Table 40, the alternative chosen was the replacement of 60x60 Roman homogeneous tile ceramics with epoxy flooring and experienced construction cost savings of 45%.

CONCLUSION

Based on the results of the analysis of the application of value engineering methods in the architectural work of the Arjosari Malang Type A Terminal revitalization project, obtained From the results of the value engineering analysis, three work items can be analyzed, namely yard work and parking where the recommended design alternative is the creation of a park consisting of the provision of planting media, mini elephant grass and trees less than 15 cm in diameter, then exterior façade work is recommended replacement of Aluminum Composite Panel (ACP) with Glass Reinforced Concrete (GRC) and on the floor, work recommended replacement of ceramic homogeneous tile roman 60x60 polish with epoxy floor, The total cost of architectural work on the Arjosari Malang Type A Terminal revitalization project becomes Rp.19,764,445,224. Cost savings of Rp.1,718,085,568 or 8% of the initial cost of work are obtained from architecture. Based on the analysis and preparation of the final project that has been carried out by the author, there are several suggestions, namely more knowledge and insight are needed about alternative designs and materials, and further research is needed to analyze the impact of material replacement on architectural work

DAFTAR PUSTAKA

Abreu, D. T. M. P., Barraza, J. E. F., Clavijo, M. V, Maturana, M. C., Santos, J. R., Schleder, A. M., & Martins, M. R. (2022). Research In System Reliability And Risk Analysis Under Development At The Naval Architecture And Ocean Engineering Department From the University Of São Paulo. *Ifac-Papersonline*, 55(19), 193–198. Https://Doi.Org/Https://Doi.Org/10.1016/J.Ifacol.2022.09.206. Google Scholar
Afriadinir, A., & Dinariana, D. (2019). Analisis Penerapan Value Engineering Pada Proyek

Rusunawa Mahasiswa T-24 Palembang. *Ikra-Ith Teknologi Jurnal Sains Dan Teknologi*, *3*(1), 48–58. Google Scholar

- Andriani, R. M. (2018). Penerapan Value Engineering Pada Struktur Bangunan Gedung (Studi Kasus: Proyek Universitas Negeri Yogyakarta). Google Scholar
- Indrastuti, I., & Mustifany, R. (2022). Penerapan Value Engineering Untuk Efisiensi Biaya Pada Proyek Bangunan Gedung (Studi Kasus: Proyek Pembangunan Gedung Variety Restaurant Batu Batam). *Journal Of Civil Engineering And Planning (Jcep)*, *3*(1), 94–101. Google Scholar
- Kormomolin, F., Taihuttu, F., & Kempa, M. (2020). Penerapan Value Engineering Pada Pembangunan Lahan Parkir Fakultas Teknik Universitas Pattimura Ambon. *Jurnal Simetrik*, 10(1), 295–301. Google Scholar
- Mahyuddin, M. (2020). Analisa Rekayasa Nilai (Value Engineer) Pada Konstruksi Bangunan Rumah Dinas Puskesmas Karang Jati Balikpapan. *Journal Techno Entrepreneur Acta*, 5(1). Google Scholar
- Nandito, A., Huda, M., & Siswoyo, S. (2021). Penerapan Value Engineering Pada Proyek Pembangunan Puskesmas Rego Manggarai Barat Ntt. Axial: Jurnal Rekayasa Dan Manajemen Konstruksi, 8(3), 171–186. Google Scholar
- Perhubungan, K. (2018). Peraturan Menteri Perhubungan Nomor: Km 59 Tahun 2010. Google Scholar
- Rojas, L. A., & Macías, J. A. (2013). Bridging The Gap Between Information Architecture Analysis
 And Software Engineering In Interactive Web Application Development. Science Of Computer Programming, 78(11), 2282–2291.
 Https://Doi.Org/Https://Doi.Org/10.1016/J.Scico.2012.07.020. Google Scholar
- Sharif, M. R., Habib, G., Mahfooz, S., Ali, R., & Ullah, M. K. (2023). Architectural Conservation: A Case Study Of Multan Jain Swamber Temple. *International Journal Of Social Health*, 2(5), 265–271. Google Scholar
- Yustisia, T. V. (2015). Undang-Undang No 23 Tahun 2014 Tentang Pemerintahan Daerah Dan Perubahannya. Visimedia. Google Scholar

Creative Commons Attribution-ShareAlike 4.0 International License